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Y oung First Nations (FN) children in Canada have high rates of 
lower respiratory tract infections (LRTIs), including bronchi-
olitis and pneumonia, with 44 hospital admissions for LRTI 

per 1000 infants younger than 1 year living in the Sioux Lookout FN 
Health Authority (SLFNHA) region of northwestern Ontario, com-
pared with 25 per 1000 in the general population, although rates are 
higher among Inuit infants in Nunavut (235 per 1000).1,2

Adverse respiratory health outcomes have been associated 
with poor indoor environmental quality (IEQ) worldwide.3,4 Sur-
veys have found that more than 24% of FN and Inuit housing is 
overcrowded or in need of major repairs or both, compared with 
6% elsewhere in Canada.5 Issues related to IEQ are anecdotally 
reported to be common.6,7 Few studies have quantified IEQ in FN 
housing, and most have focused on road-accessible commun-
ities.8–11 We evaluated IEQ and respiratory morbidity in the 
homes of young children in 4 FN communities receiving health 

services from SLFNHA. Three communities were accessible only 
by air or winter road. We hypothesized that poor IEQ would be 
associated with respiratory morbidity in this population.

Methods

Study design and participants
We performed a cross-sectional study of IEQ and respiratory 
morbidity in Lac Seul FN, Kasabonika Lake FN, Sandy Lake FN 
and Kitchenuhmaykoosib Inninuwug FN. We chose communities 
based on size (to minimize cost), a variety of rates of LRTI and 
local recommendations.1 We aimed to survey about 25  houses 
per community. We did not select houses randomly, but given 
the small population of these communities (about 1200 people 
per community), our convenience sample included approxi-
mately 40% of eligible houses.12,13
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Abstract
Background: Rates of lower respiratory 
tract infection (LRTI) among First 
Nations (FN) children living in Canada 
are elevated. We aimed to quantify 
indoor environmental quality (IEQ) in 
the homes of FN children in isolated 
communities and evaluate any associa-
tions with respiratory morbidity.

Methods:  We performed a cross-
sectional evaluation of 98 FN children 
(81 with complete data) aged 3 years or 
younger, living in 4 FN communities in 
the Sioux Lookout region of Northern 
Ontario. We performed medical chart 
reviews and administered questionnaires. 
We performed a housing inspection, 

including quantifying the interior sur-
face area of mould (SAM). We monitored 
air quality for 5 days in each home and 
quantified the contaminant loading of 
settled floor dust, including endotoxin. 
We analyzed associations between IEQ 
variables and respiratory conditions 
using univariable and multivariable 
analyses.

Results: Participants had a mean age of 
1.6 years and 21% had been admitted to 
hospital for respiratory infections before 
age 2  years. Houses were generally 
crowded (mean occupancy 6.6 [stan-
dard deviation 2.6, range 3–17] people 
per house). Serious housing concerns 

were frequent, including a lack of func-
tioning controlled ventilation. The mean 
SAM in the occupied space was 0.2 m2. 
In multivariable modelling, there was 
evidence of an association of LRTI with 
log endotoxin (p = 0.07) and age (p = 
0.02), and for upper respiratory tract 
infections, with SAM (p = 0.07) and age 
(p = 0.03). Wheeze with colds was asso-
ciated with log endotoxin (p = 0.03) and 
age (p = 0.04).

Interpretation: We observed poor 
housing conditions and an association 
between endotoxin and wheezing in 
young FN children living in Northern 
Ontario.
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Protocol-specified inclusion criteria were parental self- 
identification as FN and age 3 years or younger. We removed both 
newborns and children who had recently moved into a house with 
IEQ measurements from data analysis owing to insufficient IEQ 
expos ure or minimal health outcome data (Figure 1). When there 
were multiple eligible children in the household, we selected the 
youngest eligible child, as LRTI is commonest in the first year of life.14

Community engagement
Community selection was guided by SLFNHA. We obtained com-
munity support from the SLFNHA Chief’s Committee on Health 
and the leadership of each community — including Chief and 
Band Council, the Community Health Representative and the 
Housing Manager — and raised community awareness through 
local radio phone-in shows. Community groups identified con-
cerns about eczema and skin infections and requested that we 
evaluate potential associations with IEQ. These findings will be 
reported separately. 

We recruited a community-based research coordinator (typ-
ically the Community Health Representative) to help identify eli-
gible houses, administer surveys and provide translation. Study 
participants received a written report comparing their household 
measurements to community averages, along with targeted 
remediation measures. We shared reports with aggregate results 

with SLFNHA and the Chief and Council of participating com-
mun ities. We shared housing issues of immediate safety concern 
with the local Housing Manager.

Data collection
The research coordinator administered a validated respiratory 
health questionnaire.13 A pediatric respirologist (T.K.) reviewed 
participant medical health records at community nursing sta-
tions for respiratory illness(es). 

An indoor air quality specialist and team member docu-
mented housing characteristics, including calculation of surface 
area of visible mould (SAM), using standardized protocols devel-
oped in previous Health Canada studies.15,16 When crawlspaces 
could not be safely entered, and there was evidently heavy sur-
face mould contamination, we coded SAM as more than 0.2 m2. 
We defined presence of overcrowding as more than 1 person per 
room, excluding bathrooms.5

We deployed air monitoring equipment for 3–5 days in the 
main living area (Appendix 1, available at www.cmaj.ca/lookup/
doi/10.1503/cmaj.202465/tab-related-content). We logged par-
ticulate matter 2.5 (PM2.5) concentrations by laser photometry 
and an in-line filter to collect corresponding gravimetric meas-
urements. We also analyzed filters for levoglucosan,10,17–20 a 
major constituent of wood smoke.21 We used a carbon dioxide 
(CO2) sensor attached to a data logger to measure CO2, with a 
second logger to collect temperature and relative humidity (RH). 
We also measured these in a central outdoor location in each 
community. We measured formaldehyde and acetaldehyde with 
passive samplers and captured volatile organic compounds 
(VOCs) using thermal desorption tubes.

We collected settled dust samples from the living room floor, 
typically from 1–2 m2 of flooring. We sieved the dust after storing 
it in a dry location and analyzed dust fraction < 300 µm for endo-
toxin, house dust mite allergens and 1,3-β-D-glucan, used as an 
indicator of fungal load. We extracted and measured the dust 
mite allergens Der f1 (Dermatophagoides farinae) and Der p1 
(D. pteronyssinus).22 We calculated glucan and endotoxin load by 
dividing their weights by the surface area of flooring vacuumed 
(m2).23,24 We carried out IEQ monitoring during the cold weather 
season when doors and windows are typically closed, and indoor 
contaminant concentrations are typically highest.

Outcomes
The primary study outcome was LRTI, and the secondary out-
comes were upper respiratory tract infection (URTI) and wheeze 
with colds (based on questionnaire reporting).

Covariates and variables
To minimize type I errors and ensure model stability given con-
straints of sample size, we decided a priori which variables we 
would use to examine associations between IEQ and health. We 
chose total SAM and settled dust glucan as markers of mould 
exposure; PM2.5, indoor CO2 as a proxy of indoor ventilation, and 
settled dust endotoxin. We included commonly recognized risk 
factors for LRTI (prematurity and age) in multivariable analyses 
as potential confounders.25

Declined  n = 21*

Approached

n = 124* 

Excluded  n = 5  

• Older twin  n = 1  

• Not FN ancestry  n = 1  

• Newborn or just moved to

  current house  n = 3  

Recruited

n = 103

Retained in descriptive statistics

n = 98

Excluded from multivariate analysis 

because of incomplete data on 

endotoxin, CO
2
, PM

2.5
, visible mould

or confounders  n = 17   

Included in multivariate analyses

n = 81†

Figure 1: Consolidated Standards of Reporting Trials (CONSORT) flow 
chart showing flow of participants through the study. Note: CO2 = carbon 
dioxide, FN = First Nations, PM2.5 = particulate matter < 2.5 µm. *Number 
of participants approached is somewhat approximate for 2 of 4 commun-
ities. †Actual sample size depends on each model (see tables). 
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Statistical analysis
Given minimal pre-existing data available on IEQ and pediatric 
respiratory morbidity in Canadian FN communities, we could not 
estimate sample size requirements.1 Although we had previously 
observed significant associations between CO2 and LRTI in 
49 young Inuit children, LRTI rates are much higher in Nunavut.1,13

We compiled exposure data using SAS, merged them with 
health and questionnaire data in an Excel spreadsheet and 
transferred them to R for analyses.26,27 We summarized data 
using means with standard deviations (SDs) as well as medians 
with interquartile ranges, as several variables were skewed. We 
described categorical variables using frequencies and percent-
ages. We reported outcomes that were measured during visits 
as event rates annualized per child’s years of life; otherwise, 
we reported them as a binary (yes or no) outcome. We trans-
formed the covariate endotoxin using the natural logarithm 
given its skewed distribution. For covariates that were found 
to have a nonlinear association with an outcome, we included 
a 3-knot restricted cubic spline in the model. We used multi-
variable negative binomial regression with an offset given by 
the log age to model outcomes expressed as event rates (LRTI 
and URTI). We used multivariable logistic regression to model 
the outcome of wheeze with colds, which was a binary vari-
able. We included age as a predictor in each of the models. We 
dichotomized SAM as being above or below 0.2 m2.28 Because 
some values of covariates were missing (Appendix 2, Table S1, 
available at www.cmaj.ca/lookup/doi/10.1503/cmaj.202465/
tab-related-content), we ran regression modelling using com-
plete cases; we carried out sensitivity analyses using multiple 
imputation with chained equations and predictive mean 
matching using the R package MICE with 50 iterations.29 Given 
that about 17% of records had at least 1 missing value, we 
used 17 imputations.30

Ethics approval
We obtained Research Ethics Board approvals from Health 
Canada, the Children’s Hospital of Eastern Ontario (CHEO), the 
Ottawa Hospital, and the Sioux Lookout Meno Ya Win Health 
Centre. We developed the study under the guidance of the 
Nishnawbe Aski Nation and SLFNHA. Permission was granted 
by SLFNHA and each participating community. Although data 
resided at CHEO, the Nishnawbe Aski Nation had full access to 
the data, and participated in data analysis and interpretation 
of results.

Results

Characteristics of the participants and their housing
We recruited 103 participants, from 102 houses, into the study. 
We subsequently excluded 5 participants for protocol violations, 
leaving 98 participants for descriptive analysis. There were com-
plete data for analyzed covariates for 81 participants, who were 
included in the multivariable analyses (Figure 1).

Participant and house characteristics are provided in Table 1. 
The sample size represented about 21% (98/478) of eligible 
children.12 Participants had a mean age of 1.6 years (SD 1.0; 

range 0.08–3.91 yr [Table 1]). Fifty-one (52%) were male. Indoor 
commercial tobacco smoking was prevalent, with 1 or both 
guardians smoking in 94% (88/94) of houses. The median num-
ber of smokers per house was 2.0 (range 0–7).

Houses had a mean heated house volume of 243.2 m3 (SD 
114.1) and most were crowded, with a mean occupancy of 6.6 
(SD 2.6, range 3–17) people per house (Table 1 and Table 2). In 
comparison, the typical volume of a smaller house in southern 
Canada is 350–400 m3 and 400–600 m3 for a medium-sized 
house, and the average household size in Canada is 2.5 peo-
ple.22,31 Household concerns identified during the inspections 
included lack of controlled ventilation with a heat recovery 
ventilator (HRV) because the device was absent, not working or 

Table 1: Characteristics of the houses visited, n = 98 
participants 

Exposure variable
No. (%) of 

participants*

No. (%)  
of missing 
variables 

Location 0 (0)

    Big Trout Lake 21 (21)

    Kasabonika 24 (24)

    Lac Seul 22 (22)

    Sandy Lake 31 (32)

Average heated volume, m2, mean ± SD 243.2 ± 114.1 0 (0)

No. people in house, mean ± SD 6.6 ± 2.6 0 (0)

    Range 3–17

People/room (excluding bathroom), 
mean ± SD

1.4 ± 0.5

Crowding (> 1 person/room) 63 (64)

Type of heating fuel 0 (0)

    Wood and electricity 71 (72)

    Electricity only 15 (15)

    Other 12 (12)

Guardian smokes

    Male 76 (89) 13 (13)

    Female 73 (74) 0 (0)

    Either 88 (94) 4 (4.1)

Houses lacking potable water 32 (33) 0 (0)

Controlled ventilation fan 43 (44) 1 (1)

    Use of fan always or sometimes 15 (16) 2 (2)

Working range hood fan 52 (53) 0 (0)

Range hood fan in bathroom 44 (45) 0 (0)

Reported an episode of flooding in 
home

47 (48) 0 (0)

    Signs of water penetration in  
    exterior walls

43 (44) 0 (0)

    Exterior signs of water penetration  
    in windows

44 (45) 0 (0)

Note: SD = standard deviation.
*Unless otherwise specified.
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not used in 85% (83/98) of houses; signs of water penetration in 
exterior walls in 44% (43/98); immediate safety issues (includ-
ing extreme fire hazard, electrical hazard or shifting of the 
house in 6 houses (6%) (Table 3); and damaged windows 
(including broken windowpanes and moisture-damaged frames 
or sills) in 51% (50/98).

Characteristics of indoor environmental quality
Characteristics of IEQ variables are provided in Table 2. The 
mean living room temperature was 25.6°C (SD 2.8), and RH was 
30.0% (SD 7.9). In contrast, in Saskatoon, Saskatchewan, the 
mean temperature was 20°C and the mean RH was 35% in the 
winter.22 The mean indoor CO2 exceeded generally recommended 
standards (> 1000 ppm) in 56% (53/95) of the houses (Appendix 3, 
Supplemental Figure E1, available at www.cmaj.ca/lookup/
doi/10.1503/cmaj.202465/tab-related-content).13,22,32,33 Of these, 
19 had mean CO2 values between 1500 and 2500 ppm. The 
mean concentration of PM2.5 was 17.1 (SD 18.9) μg/m3, which 
exceeds World Health Organization 1-year average guidelines 
for outdoor air of 10 μg/m.3,34,35 As mean ambient PM2.5 was 

4.93 (SD 1.8) μg/m3, indoor PM2.5 appeared to be largely a result 
of indoor sources such as wood stove use, cooking and com-
mercial tobacco use. Concentrations of VOCs were generally 
acceptable, although the level of m- and p-xylene was 
elevated.3,36–38

The mean SAM in the occupied space was 0.2 m2. However, 
9% (9/98) of homes had SAM over 1%–14% of the floor area of 
the occupied space. Six houses had very high SAM (> 1 m2) visi-
ble below grade (in crawlspaces and basements), which is much 
greater than reported elsewhere in Canada.39,40 The mean load 
of settled dust endotoxin was 560 532 (SD 2 264 295) EU/m2, 
which is markedly higher than previously reported in southern 
Canada.40,41 Firewood was stored indoors in most houses, and 
half (30/60) of these had subjectively “moderate or large” 
amounts of sawdust. Endotoxin levels did not differ substan-
tially by heating source (Table 2). Levoglucosan levels were rela-
tively low. The mean concentration of dust mite allergens Der p1 
and Der f1 were 218.9 (SD 655.8) ng/g and 9.2 (SD 17.9) ng/g, 
respectively, which were less than that reported in other Can-
adian houses.42

Table 2: Indoor air quality in houses visited, n = 98 participants

Exposure variable
No. (%) of 

missing variables Mean ± SD Median (IQR)

Relative humidity in child’s room 5 (5) 35.0  ± 9.0 33.5 (28.5–43.0)

Relative humidity in living room 3 (3) 30.0 ± 7.9 28.1 (24.0–36.0)

Mean living room temperature 3 (3) 25.6 ± 2.8 25.7 (23.6–27.6)

CO2, ppm 3 (3) 1146.0 ± 505.5 1078.2 (845.4–1283.9)

Max CO2, ppm 3 (3) 1797.1 ± 708.1 1691.0 (1377.5–1948.0)

Homes with mean CO2 > 1000, n (%) 3 (3) 53 ± 55.8)

Formaldehyde, µg/m3 2 (2) 19.9 ± 11.9 18.4 (11.4–26.1)

Acetaldehyde, µg/m3 2 (2) 18.0 ± 14.9 15.7 (10.2–25.2)

Glucans, µg/m2 8 (8) 272.8 ± 673.7 39.6 (14.1–225.3)

Endotoxin, EU/m2 8 (8) 560 532.2 ±  
2 264 294.9

35 441.4 (12 943.3–144 472.8)

Endotoxin levels in (n = 71 homes):

    Homes heated by wood and electricity 5 (7) 300 558.8 ± 801 266.3 37229.2 (137 96.7–135 025.4)

    Homes heated by electricity only 3 (20) 2 373 263.0 ± 
5 783 731.1

24222.8 (16 806.6–185 652.9)

    Homes heated by other heating sources 0 (0) 177 655.2 ± 294 689.1 26 589.7 (12 191.7–186 518.7)

Surface area mould, m2 0 (0) 0.2 ± 0.5 0.0 (0.0–0.1)

Levoglucosan, µg/m3 15 (15) 0.1 ± 0.3 0.0 (0.0–0.1)

PM2.5 (DustTrak), µg/m3 7 (7) 66.8 ± 85.3 40.5 (26.3–74.9)

PM2.5 gravimetric, µg/m3 11 (11) 17.1 ± 18.9 11.7 (6.8–19.2)

Ultrafine particulate matter, count/cm3 13 (13) 31 035.3 ± 19 399.5 25797.0 (16 924.9–38 535.1)

Benzene, µg/m3 4 (4) 2.2 ± 1.8 1.6 (0.9–3.1)

Toluene, µg/m3 4 (4) 7.8 ± 10.5 3.9 (2.4–8.8)

m-xylene + p-xylene concentration, µg/m3 4 (4) 6.3 ± 18.2 2.3 (1.3–5.2)

Nicotine + nicotyrine concentration, µg/m3 4 (4) 0.6 ± 1.4 0.0 (0.0–0.5)

Note: CO2 = carbon dioxide, IQR = interquartile range, PM2.5 = particulate matter < 2.5 µm, ppm = parts per million, SD = standard deviation.
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Respiratory diseases
Lower respiratory tract infections were frequent, with a mean of 
0.73 (SD 1.45) LRTIs per year of life. Of participants, 21% (20/97) were 
admitted to hospital in the first 2 years of life and 25% (24/98) 
were medically evacuated for a respiratory illness. Children were 
seen in the health centre with URTIs an average of 1.6 (SD 1.8) 
times per year of life. Wheezing with colds occurred in more than 
one-third (39%, 38/98), but only 4/98 of children (4%) received a 
diagnosis of asthma.

Multivariable modelling for primary outcome of lower 
respiratory tract infection
In a multivariable model with complete cases, there was evi-
dence of an association between log endotoxin and the rate of 
LRTIs that approached conventional statistical significance 
(adjusted rate ratio [RR] 1.14 per unit of log [EU/m2], 95% confi-
dence interval [CI] 0.98–1.33), and age and the rate of LRTIs 
(adjusted RR 0.65 per year of life, 95% CI 0.46–0.91) (Table 4). 
Results were similar using the imputed data set (Appendix 2, 
Supplementary Table S2).

Multivariable modelling for secondary respiratory 
outcomes (upper respiratory tract infections and 
wheeze with a cold)
In a multivariable model using complete cases, there was evi-
dence for an association between SAM > 0.2 m2 and rates of URTI 
that approached conventional statistical significance (adjusted 
RR 1.61, 95% CI 0.95–2.72), as well as age and rate of URTI 
(adjusted RR 0.79 per year of life, 95% CI 0.65–0.98) (Table 5 and 
Appendix 2, Supplementary Table S3). In a multivariable model 
of complete cases with wheeze with colds as the outcome, log 
endotoxin was associated with wheeze with colds (odds ratio 
[OR] 1.32 per unit of log [EU/m2], 95% CI 1.04–1.70) and with age 
(OR 1.70 per year, 95% CI 1.03–2.90) (Table 6). These effects were 
slightly attenuated using imputed data in the model (Appendix 2, 
Supplementary Table S4).

Interpretation

This quantitative assessment confirmed previous surveys that 
reported that many FN houses require major repair(s).5 The hous-
ing crisis experienced by FN people in Canada is historically well 
documented.8,43,44 Centuries of assimilation tactics, colonialism 
and systemic racism have created structural barriers including 
employment, education, economic and housing inadequacies, as 
well as systematically disrupting transfer of intergenerational life 
skills. Inequalities and underfunding have resulted in houses that 
are poorly constructed and of insufficient size, with inadequate 
funding for maintenance and upkeep. With the loss of integrity of 
the air and vapour barrier, overcrowding, inadequate ventilation 
and indoor storage of firewood, contamination with mould and 
endotoxin was common, with high interior SAM and extraordin-
arily elevated endotoxin loading. Endotoxin exposure was associ-
ated with wheeze with colds and tended to be associated with 
LRTI, whereas SAM tended to be associated with URTI visits.

Endotoxin is a cell wall component of gram-negative bac-
teria.45,46 The mean load of settled dust endotoxin in study homes 
was much higher than in American homes in general (17 600 EU/
m2).23 Settled dust endotoxin has previously been associated with 
wheezing in young children,47,48 and airborne endotoxin with acute 
respiratory illnesses and infections in infants.45 Endotoxin has com-
plex effects on immune function, with early exposure reducing the 
incidence of asthma, and late exposure increasing the risk of 
exacer bations in people with pre-existing asthma.46,47 The high 
prevalence of wheeze with colds suggests asthma may be under-
diagnosed, although the term “wheezing” may have been used 

Table 3: Major housing issues identified by the indoor air 
quality specialist

Type of 
issue

No. (%) of 
houses affected

n = 98 Description

Immediate safety

1 (1) No wood stove chimney shield 
(extreme fire hazard)

1 (1) No insulation baffle around chimney 
in attic: fire hazard

2 (2) Electrical fire or shock hazard

1 (1) House shifted; many large gaps with 
rotten wood

1 (1) Possible cracked heat exchanger in 
wood stove; house contaminated 
with soot and carbon monoxide risk 
if furnace blower turned off

Water penetration (and plumbing) 

13 (13) Plumbing fixture leaks with area 
dampness (bathroom, kitchen, 
water tank)

13 (13) Mouldy or damp crawlspace floor (in 
most cases, polyurethane sheet 
vapour barrier over dirt floor missing)

10 (10) Sump pump not working, not 
present or drains too close to 
foundation

4 (4) Sump pump discharge pipe not 
connected

6 (6) Roof leaks with mould or damage to 
ceilings, walls

4 (4) Exterior damage leading to water 
penetration

3 (3) Broken chimney flashing — chimney 
leaks when it rains

3 (3) Plumbing not working

Air quality or ventilation

2 (2) Exhaust fans vent into attic

1 (1) Heat recovery ventilator fresh air 
intake near oil furnace exhaust

1 (1) No openable windows, no exhaust 
fans and no heat recovery ventilator

1 (1) Oil furnace back drafting

1 (1) Wood stove back drafting
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Table 5: Multivariable modelling for URTI (complete case analysis, n = 81, with 189 URTI visits)*

Covariate
Unadjusted rate ratio 

(95% CI)
Adjusted rate ratio 

(95% CI)

Age, yr 0.79 (0.64–0.97) 0.79 (0.65–0.98)

Born premature, yes 0.93 (0.55–1.58) 0.89 (0.53–1.48)

PM2.5, µg/m3 1.001 (0.997–1.004) 1.000 (0.997–1.003)

Surface area of mould > 0.2 m2, yes 1.65 (0.96–2.88) 1.61 (0.95–2.72)

CO2, ppm 1.000 (1.000–1.001) 1.000 (1.000–1.001)

Log endotoxin (3-knot restricted cubic spline†), EU/m2

    First coefficient 1.28 (0.96–1.72) 1.21 (0.90–1.64)

    Second coefficient 0.73 (0.51–1.03) 0.78 0.54–1.11)

Note: CI = confidence interval, CO2 = carbon dioxide, PM2.5 = particulate matter < 2.5 µm, URTI = upper respiratory tract infection.
*Rate ratios represent estimated ratio of events/year of life between groups. Rate ratios are per-unit increase for continuous variables or for the 
described group (e.g., surface area > 0.2 m2 or born premature) compared with the referent. An adjusted rate ratio > 1 indicates the covariate is 
associated with increased event rates.
†Knots for log endotoxin: 7.95, 10.50, 14.71.

Table 6: Multivariable modelling for wheeze with cold (complete case analysis, n = 81, with 
31 participants reporting wheeze with cold)*

Covariate
Unadjusted odds ratio 

(95% CI)
Adjusted odds ratio 

(95% CI)

Age, yr 1.75 (1.10–2.86) 1.70 (1.03–2.90)

Born premature, yes 1.33 (0.43–4.03) 1.09 (0.32–3.62)

PM2.5, µg/m3 0.997 (0.997–1.003) 0.998 (0.989–1.004)

Surface area of mould > 0.2 m2, yes 1.01 (0.28–3.36) 0.82 (0.20–3.02)

CO2, ppm 1.000 (0.999–1.001) 1.000 (0.998–1.001)

Log endotoxin, EU/m2 1.33 (1.06–1.72) 1.32 (1.04–1.70)

Note: CI = confidence interval, CO2 = carbon dioxide, PM2.5 = particulate matter < 2.5 µm.
*Odds ratios are per-unit increase for continuous variables or for the described group (e.g., surface area > 0.2 m2 or born premature) compared 
with the referent.

Table 4: Multivariable modelling for LRTI (complete case analysis, n = 81, with 74 LRTI visits)* 

Covariate
Unadjusted rate ratio 

(95% CI)
Adjusted rate ratio 

(95% CI)

Age, yr 0.62 (0.45–0.86) 0.65 (0.46–0.91)

Born premature, yes 1.68 (0.73–3.98) 1.57 (0.76–3.24)

PM2.5, µg/m3 0.999 (0.994–1.005) 1.00 (0.99–1.00)

Surface area mould > 0.2 m2, yes 0.33 (0.10–0.99) 0.44 (0.14–1.20)

Log endotoxin, EU/m2 1.14 (0.96–1.36) 1.14 (0.98–1.33)

CO2 (3-knot restricted cubic spline†), ppm

    First coefficient 1.003 (1.000–1.005) 1.001 (0.999–1.003)

    Second coefficient 0.996 (0.992–0.999) 0.998 (0.994–1.001)

Note: CI = confidence interval, CO2 = carbon dioxide, LRTI = lower respiratory tract infection, PM2.5 = particulate matter < 2.5 µm, ppm = parts per 
million.
*Rate ratios represent estimated ratio of events/year of life between groups. Rate ratios are per-unit increase for continuous variables or for the 
described group (e.g., surface area > 0.2 m2 or born premature) compared with the referent. An adjusted rate ratio > 1 indicates the covariate is 
associated with increased event rates.
†Knots for CO2: 600.1, 1054.2, 1865.1.
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imprecisely.49 Endotoxin levels were likely increased by indoor stor-
age and use of firewood and accumulation of sawdust.50

Many houses were poorly situated, leaving them prone to flood-
ing and water penetration. Wet and mouldy crawlspaces were com-
mon. Mean 1,3-β-D-glucan loading in study houses was much 
higher than in infants’ houses in Cincinnati (18.4 μg/m2).51 Surface 
area of visible mould tended to be associated with URTIs, which 
may be clinically important as URTIs are important antecedents for 
more severe respiratory illnesses, including LRTI and asthma 
ex acerbations.52,53 Surface area of visible mould above 0.2 m2 has 
been associated with recurrent wheezing in American infants, with 
a relative risk of 2.1.28 Previous surveys have described a high prev-
alence of visible mould in FN homes.11,54 Education on the need to 
notify housing departments about water leaks and flooding is 
essential, but must be accompanied by funding to effect repairs.

Other important IEQ concerns were frequent. Crowding resem-
bled previous observations in Nunavut, where it was associated 
with wheezing with colds.22 Crowding increases the risk of viral 
infections and airborne contaminants.55 Mean indoor CO2, as a 
reflection of adequacy of ventilation, was similar to that in Mani-
toba FN communities (1174 ppm),10 but was somewhat less than in 
Nunavut (1358 ppm).13 Only 44% of study houses had an HRV, and 
less than 15% had an operational one. Similarly, 57.8%–87.5% of 
FN houses in northern Manitoba had no or a nonfunctional HRV.11 
The lack of substantial associations between CO2 or other IEQ fac-
tors and LRTI may reflect a lower risk of LRTI than that observed in 
Inuit children and children in low-income countries.56,57 Indoor 
PM2.5 concentrations in our study were not unusual for homes 
heated by woodstoves.58,59 Levoglucosan is primarily a marker of 
wood combustion.21,59,60 The indoor levoglucosan/PM2.5 ratio of 
0.13% (SD 0.31) was less in rural British Columbia (1.0%),60 sug-
gesting a higher contribution of commercial tobacco smoke. Com-
mercial tobacco smoke exposure is a known risk factor for LRTI,61 
but the lack of unexposed children precluded meaningful analy-
sis.22,55 Elevated indoor concentrations of PM2.5 have been associ-
ated with LRTI elswhere.58,62,63 Some IEQ problems might be rectifi-
able by residents with relevant educational tools related to HRV 
use, firewood storage and furniture placement to promote air cir-
culation, and reduce moisture accumulation and mould growth. 
Often, this will require addressing systemic, structural and eco-
nomic barriers faced by residents.64

Our study had the benefit of engaging an indoor air quality 
specialist, who used standardized tools and quantitative meth-
ods. We had broad community support and obtained direction 
from the SLFNHA Chief’s Committee on Health. Given our prelim-
inary results, we supported capacity building by working with FN 
students to develop educational deliverables and by developing 
HRV educational programs for housing departments.65

Limitations
Our study had limitations common to most studies of IEQ: the 
cross-sectional design and disparity between the time of IEQ 
meas urements and historical outcomes means that only associa-
tions, rather than causality, can be surmised.13,24,28 Precision and 
power were limited owing to the small sample size. The larger pro-
portion of eligible children who were included, compared with typ-

ical urban research, enhanced generalizability, although lack of 
random sampling increased the risk of selection bias. Because we 
assessed several exposures and outcomes, there may be an 
increased risk of type I errors. Flooring settled dust mite is often 
used as a proxy for indoor burden of dust mite antigen, but less 
dust could be collected as most houses were not carpeted.66 We 
therefore also sometimes collected dust from upholstered furni-
ture, which has been done elsewhere, but is less well standard-
ized.23,67 The 2 methods for quantifying PM2.5 — gravimetric and 
photometric — are not completely comparable, limiting compari-
son with other studies. Variable quantification methods for endo-
toxin also hampers comparison between studies.24 Further 
research is needed to determine how best to use levoglucosan as a 
marker of indoor wood combustion.59 The best method of quanti-
fying indoor mould is controversial, particularly in houses where 
much of the mould is located outside the lived space, such as 
crawlspaces, but from where it can potentially infiltrate.4,68,69 We 
did not record how many households were approached for the 
study but declined participation, although we believe we have a 
close estimate of the number of households that declined.

Conclusion
Many houses in these FN communities had substantial IEQ problems. 
Presence of endotoxin was associated with wheezing with colds and 
tended to be associated with LRTI in young children. Surface area of 
visible mould tended to be associated with URTI visits. Urgent collec-
tive action is needed to respond to historically damaging impacts of 
colonization, including systemic indifference.70 Increased housing 
stock appropriate for local geographic, climatic and cultural needs 
should be matched to solutions that are FN led and governed. Eco-
nomic opportunity, elimination of food insecurity and provision of 
potable water will allow communities and residents to apply more 
resources to the upkeep of existing houses. Such measures will 
improve the overall health of FN peoples, particu larly vulnerable 
family members, such as children and elders.71,72
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